High Performance MgO-barrier Magnetic Tunnel Junctions for Flexible and Wearable Spintronic Applications
نویسندگان
چکیده
The magnetic tunnel junction (MTJ) using MgO barrier is one of most important building blocks for spintronic devices and has been widely utilized as miniaturized magentic sensors. It could play an important role in wearable medical devices if they can be fabricated on flexible substrates. The required stringent fabrication processes to obtain high quality MgO-barrier MTJs, however, limit its integration with flexible electronics devices. In this work, we have developed a method to fabricate high-performance MgO-barrier MTJs directly onto ultrathin flexible silicon membrane with a thickness of 14 μm and then transfer-and-bond to plastic substrates. Remarkably, such flexible MTJs are fully functional, exhibiting a TMR ratio as high as 190% under bending radii as small as 5 mm. The devices' robustness is manifested by its retained excellent performance and unaltered TMR ratio after over 1000 bending cycles. The demonstrated flexible MgO-barrier MTJs opens the door to integrating high-performance spintronic devices in flexible and wearable electronics devices for a plethora of biomedical sensing applications.
منابع مشابه
Spintronic Nano-Devices for Nonvolatile VLSIs
I review physics and materials science of nanoscale spintronic devices being developed for nonvolatile VLSI [1]. VLSIs can be made high performance and yet standby-power free by using magnetic tunnel junction, a two-terminal spintronic device, in combination with current CMOS technology. The scalability of perpendicular magnetic tunnel junctions utilizing CoFeB-MgO [2] is passing the 20 nm dime...
متن کاملترابرد الکتریکی وابسته به اسپین در ساختارهای نامتجانس Fe-MgO-Fe
In this paper, spin-dependent electrical transport properties are investigated in a single-crystal magnetic tunnel junction (MTJ) which consists of two ferromagnetic Fe electrodes separated by an MgO insulating barrier. These properties contain electric current, spin polarization and tunnel magnetoresistance (TMR). For this purpose, spin-dependent Hamiltonian is described for Δ1 and Δ5 bands in...
متن کاملControlling shot noise in double-barrier magnetic tunnel junctions.
We demonstrate that shot noise in Fe/MgO/Fe/MgO/Fe double-barrier magnetic tunnel junctions is determined by the relative magnetic configuration of the junction and also by the asymmetry of the barriers. The proposed theoretical model, based on sequential tunneling through the system and including spin relaxation, successfully accounts for the experimental observations for bias voltages below 0...
متن کاملFirst Principle Simulations of Fe/mgo/fe Magnetic Tunnel Junctions for Applications in Magnetoresistive Random Access Memory Based Cell Phone Architectures
Fe/MgO/Fe magnetic tunnel junctions (MTJs) have been reported to have very high tunnel magnetoresistance (TMR) ratios. In this work, we present the results of First Principle simulations of Fe/ MgO/Fe MTJs with LSDA as the exchange correlation. The I-V characteristics in the antiparallel magnetization state exhibit strong features. The bias dependence of the TMR ratio shows nearly 100% TMR rati...
متن کاملFirst-principles modelling of magnetic tunnel junctions
Magnetic tunnel junctions (MTJ) are promising candidates for applications in spintronic devices such as magnetic random access memories, read heads and sensors [1]. The MTJs consist of two ferromagnetic layers separated by an insulating barrier layer. The physical quantity measured for signal detection is the tunnelling magnetoresistance (TMR), i.e. the relative difference in the resistance bet...
متن کامل